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LETTER TO THE EDITOR 

The growing self-avoiding trail 
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Institut fur Festkorperforschung, der Kemforschungsanlage Julich, Postfach 1913, D-5170 
Julich, West Germany 
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Abstract. We introduce a new random walk which can be used as a model for the 0 
polymer. The walk belongs to a different universality class from the usual SAW. Extensive 
Monte Carlo calculations have been performed to calculate the exponents y and U. We 
find in two dimensions U = 0.535 and y = 1.025 and in three dimensions U = 0.50 and y = 1 .O. 
This result strongly suggests that the upper critical dimension is equal to three. 

The scaling behaviour of a linear polymer in a ‘good’ solvent is by now very well 
understood. By using the self-avoiding walk (SAW) as a model one is able to study 
this problem in great detail. The sucess of this description has stimulated several 
authors to study kinetic versions of the SAW which could possibly describe the non- 
equilibrium phenomenon of polymer growth (Majid et a1 1984, Lyklema and Kremer 
1984). In the growing version of the SAW (GSAW) the constant one step probability 
( l / ( q -  l), q :  coordination number) for the SAW has been replaced by l/(number of 
free sites) for the GSAW. In this way the walker checks its environment and tries to 
avoid early termination. It was also suggested that these models could describe the 8 
point behaviour of linear polymers (Majid et a1 1984), which is governed by different 
exponents from those of the usual SAW. A more detailed study of this model (Lyklema 
and Kremer 1985) shows that the different definition of the one-step probabilities does 
not change the critical behaviour but only shifts the asymptotic scaling regime to much 
larger N values. This confirmed the theoretical predictions of Peliti (1984) and 
Pietronero (1984) that this model should belong to the same universality class as the 
SAW. Thus this walk cannot serve as a model for the 8 polymer. 

In this letter we introduce a new model which shows a different asymptotic behaviour 
from that of the SAW. The model allows for self-intersection, which models the vanishing 
two-body interactions typical for the 8 polymer (de Gennes 1979). It should however 
not be confused with the k-tuple SAW (Malakis 1976). The model is a ‘growing’ version 
of the self-avoiding trail (SAT) (Malakis 1975, 1984). In its usual form the SAT is 
constructed similarly to the SAW, except that each bond rather than each site can be 
occupied only once. A new bond is attached to the chain with equal probability for 
all bonds. If the chosen bond is occupied, the walk is terminated. From this construc- 
tion one expects the same critical exponents as for the SAW, because the paths generated 
in this way are the same, as has been shown recently (Malakis 1984, Guttmann 1985a, b). 
The growing SAT (GSAT) belongs however to a different universality class, as may be 
anticipated from the construction process. We have the same rules as for the SAT 

except that we write the one-step transition probability pi as 

p i  = l/number of free bonds. (1) 
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For the square lattice we have p I  = f  if the last site has not been visited before. If 
a site is occupied for the second time, three bonds have been used and we have pi = 1 
(see figure l (a ) ) .  This walk can only end at the origin, since this is the only site for 
which an odd number of bonds leading to it are occupied. After the second visit, three 
bonds are occupied, and only one bond remains to enter this site again (see figure 
l(b)).  The origin is also special, because the first bond is chosen with probability a 
and after visiting it for the second time the one-step probability is 3. If the walk enters 
a site other than the origin, there is always at least one free bond through which the 
walk can leave. This walk still displays an excluded volume effect in two dimensions, 
as can be seen from figure 2. The battlement type construction acts like a hard wall, 
since the area inside cannot be visited by the walker. The foregoing discussion obviously 
holds only for lattices where the sites are connected by an even number of bonds. For 
instance for the honeycomb lattice the probability to choose a bond from a site which 
is visited for the first time is i. On a second visit, however, there is no free bond 
leaving. The walk can terminate at every site and there is no difference from the usual 
SAT. Thus one cannot define a GSAT on the honeycomb lattice. On the triangular 
lattice and in higher dimensions we have the extra freedom of choosing the maximum 
number of visits M to a site. On the triangular lattice, for example, we can define two 
different walks e.g. M = 2 and M = 3. (The choice M = 1 reduces this walk to the 
GSAW.) The M = 2 case can terminate at every site. If all nearest-neighbour sites of 
a central site C have been visited twice and site C no more than once, this creates a 
trap and therefore the walk will terminate if it enters C. From the experience with the 
SAW-GSAW one expects that the M = 2 case on the triangular lattice will also be in the 

Figure 1. The one-step probabilities which are not equal to f are shown for ( a )  an arbitrary 
site, ( b )  the origin. Note that in ( b )  the walk terminates at the origin. 

>- - 
f- - 

Figure 2. The battlement type construction which causes the excluded volume effect. The 
broken line shows the repulsive effect of this wall. 
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SAW universality class. However the asymptotic behaviour will probably show up only 
at very high N values. Thus I define the GSAT to be the walk where a site can be 
visited f times the coordination number on a lattice with an even number of bonds 
per site. This walk has the property that it only terminates at the origin in contrast to 
all other walks in the SAW universality class. Therefore one can expect that this walk 
will have a different asymptotic behaviour from the usual SAW. 

A possible interpretation of this model is the following. Associate with every site 
on the square lattice a small region in continuous space which can be occupied twice 
by the walk. Now one can redraw any trail in such a way that no intersections occur 
and still have the double occupied sites visited twice (see figure 3). This represents 
the cancellation between the attractive and repulsive forces between different parts of 
the walk. This interpretation is strictly speaking not possible for the triangular lattice 
or in higher dimensions. However from universality considerations one expects no 
differences between a continuum approach or a different lattice type approach. 

Figure 3. Interpretation of the intersections (see text). 

For this walk I have performed extensive Monte Carlo simulations using the static 
sampling procedure (Kremer et al 1982). On the square lattice I have generated 48 x lo6 
chains of maximum length N = 200. The first termination occurs at the ninth step and, 
as expected, the acceptance rate is very high. Even at N = 200, 94.68% of the chains 
have survived. However, a considerable number of chains manage to return to the 
origin. The difference between the acceptance rate at N = 198 and 200 is 0.02%. To 
improve the accuracy of the analysis I have generated a smaller number of chains 
(5 x lo6) of maximum length N = 2000. In this case the mean square end-to-end 
distance is only calculated every tenth step. At N = 2000 the acceptance rate is 89.52%. 
On the simple cubic lattice I have generated 37 x 10” chains of maximum length N = 400. 
Here the first termination occurs at step thirteen. The acceptance rate at N = 400 is 
99.976%. In this case, the difference between the acceptance rate at N = 398 and 400 
is of the order of lo-’ showing the extremely slow decrease of this function. Also in 
this case I have generated a small number of chains ( 2 ~ 1 0 ~ )  with maximum length 
N = 2000. Again the mean square end-to-end distance is calculated every tenth step. 
The acceptance rate for N = 2000 is 99.969%. 

From these simulations I have calculated the mean square end-to-end distance 
( R 2 (  N ) )  and the fourth moment (R4( N ) ) .  To estimate the accuracy of the data, I have 
also calculated the mean distance in the x direction. This quantity fluctuates around 
zero and from its absolute value I estimate the error in ( R * ( N ) ) ” *  to be less than 
0.01%. To analyse these data I assume the usual asymptotic behaviour (Privman 1984, 
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Djordjevic et a1 1983) 

( R 2 ( N ) )  = A N Z " ( l +  BN-"+ CN-'  . . .) ( 2 )  

and a similar expression for the fourth moment. From this one can calculate v, the 
leading exponent, from the following definition 

1 ln[(R2(N+i)) / (R2(N- i))] 
2 l n [ ( N + i ) / ( N - i ) ]  

v ( N ) = -  (3) 

Inserting the expression (2) into this definition gives 

v ( N ) = v - t B N - A - t C N - ' +  . . . .  (4) 
This expression is independent of the index i, which gives us the possibility of studying 
larger i values without introducing a bias. The accuracy of the analysis is thereby 
greatly improved as shown in figure 4, where v ( N )  as calculated from ( R 2 ( N ) )  is 
plotted against 1/ N for N values between 40 and 200 on the square lattice. The data 
for smaller N values fall slightly below the straight line which results from fitting the 
data for N>40.  Extrapolation of these data results in an estimate of v=O.54. To 
improve the reliability of this estimate we have analysed the data for larger N values 
(N,, ,  = 2000) in a similar way. Because the accuracy in this case is not as good one 
has to study much larger i values. In figure 5 the data for i = 50 (150 < N < 2000) and 
i = 200 (700 < N < 2000) are shown. In figure 5 ( a )  the data for the small N values 
extrapolate to v = 0.54, however the large N data ( N  > 700) clearly suggest a somewhat 
smaller value. From figure 5 (  b )  we estimate this value at v = 0.535 * 0.003. The very 
high i value which is used in this figure still did not introduce a bias compared with 
i = 10. Thus if the asymptotic behaviour sets in at very large N values and one has 
to be satisfied with Monte Carlo data of lower quality, it is still possible to apply this 
analysis provided one takes a large i value, with the restriction that i/N cannot be 
too large. The linear extrapolation is justified because the v ( N )  form a straight line 
without any observable curvature. This shows that the confluent correction exponent 
A is larger that 1, so that an extrapolation against 1/ N is allowed. However numerically 

- 
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Figure 4. A plot of v( N )  calculated from (R2( N ) )  against 1/ N for N from 40 to 200 on 
the square lattice. The upper curve is for i = 1 ,  the lower one for i = 5 .  



Letter to the Editor 162 1 

1 l N  

0 5 k I  

0 53 

i 

-- t 
t 

0. 52  
0 5 10 x 1 0 - 4  

1 I N  

Figure 5. (a )  Plot of v ( N )  calculated from ( R 2 ( N ) )  ( i  = 50) against 1/N for N between 
100 and 2000. ( b )  Plot of v ( N )  calculated from ( R 2 (  N ) )  ( i  = 200) against 1/N for N 
between 500 and 2000. 

one can never exclude the possibility that the prefactor B in (4) is very small and that 
therefore the real asymptotic behaviour only can be seen for much larger N values. 
The prefactor A in equation (2) is calculated from A = N-"07 x ( R 2 (  N ) ) .  We find 
A =  1.800*0.001. 

The exponent y is calculated from the partition function, which for a finite number 
of steps N is defined as (Lyklema and Kremer 1984) 

N 

Here p ( i ,  C,)  is the one-step probability for the ith step of an N-step walk with 
configuration C,. Far the SAW or SAT this is a constant, l /qo with qo being the 
coordination number minus one. Thus Z( N )  = a,.,qoN, where aN denotes the number 
of walks of length N. Asymptotically this number behaves like aNEqq,"y- l  (de 
Gennes 1979). This leads to the following expression for Z ( N )  

Z ( N ) a  (qc/qo)"r-l. ( 6 )  
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From the slope of a log-log plot of Z (  N + i ) / Z (  N - i) against ( N  + i)/( N - i) we find 
the exponent ( y - 1) and from the intercept with the y axis we obtain an estimate for 
qc/qo. If we assume for the GSAT the same asymptotic behaviour of Z( N ) ,  this analysis 
with i = 10 (see figure 6 )  leads to y = 1.025 * 0.003 and qc < 3 but very close to it. Note 
that the asymptotic behaviour here also sets in at N = 700. 

\ 
L J 

0 01 0 2  

log [ I N +  IO) / I N -  1O)J  

Figure6. Plotoflog[Z(N+lO)/Z(N-lO)]against log[(N+lO)/(N-lO)]for  N between 
100 and 2000. The slope gives ( y  - 1)  = 0.025. 

For the simple cubic lattice I have performed a similar analysis. In figure 7 I show 
the v( N )  ( i  = 20) calculated from ( R 2 (  N ) )  and (R4( N ) )  against 1/ N for N values 
between 40 and 400. From this plot it is clear that the v value is very close to 5. A 
linear extrapolation from the last 200 points gives an estimate of v = 0.501 f 0.002. 
However this plot is also consistent with v = f with logarithmic corrections, signalling 

0.52 1 t 

* * *  

t 
0.504 c 

0 0.01 0 0 2  
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Figure 7. A plot of v( N )  ( i  = 20) against 1/ N for N between 40 and 400 on the simple 
cubic lattice. The lower curve is calculated from ( R z ( N ) ) ,  the upper one from ( R 4 ( N ) ) .  
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an upper critical dimension d, = 3. If this is correct we have Gaussian behaviour which 
means that the ratio (R4( N ) ) / ( R 2 (  N ) ) 2  approaches the value $ for large N. This ratio 
is a slowly increasing function of N. For N = 400, the value of 1.653 is in very good 
agreement with a random walk behaviour. At the upper critical dimension one assumes 
for the mean square end-to-end distance and the fourth moment the following scaling 
behaviour 

( R 2 (  N ) )  = A2N(ln N)"  (R4( N ) )  = A,N2(ln N ) 2 a .  (7 )  

A two parameter fit gives A2 = 1.5, A4 = 3.75 and a = 0.025. To check the accuracy of 
these values we have compared the mean square end-to-end distance and the fourth 
moment calculated from (7) with the Monte Carlo results for the long chains (N,,,,, = 
2000). For (R2(N>400))  we found that the difference is smaller than O.l0/o. This 
difference for (R4( N > 1200)) is smaller than 0.2%. To get an estimate for the error 
in the value of a we have repeated this procedure for a = 0.024 and a = 0.026. Now 
the difference between ( R 2 ( N ) )  and (R4(N) )  from (7 )  and the Monte Carlo results 
has increased with a factor 8. From this we estimate the error at 0.001. The prefactor 
of course is not that sensitive. From a similar analysis for A2 between 1.45 and 1.55 
and a = 0.025 one cannot draw conclusions about the value of the prefactor. However 
this can be estimated very accurately from A2 = ( R 2 (  N ) ) /  N(1n N)'.O2'. From N > 400 
we find A2 = 1.500 f 0.001. The value for A4 is slowly increasing to 3.75 ( A4( N = 2000) = 
3.747). This is in agreement with the slow increase of the ratio ( R 4 ( N ) ) / ( R 2 ( N ) ) 2  to 
1.665 for N=2000. 

Because of the extremely high acceptance rate only very few walks are terminated 
and one cannot perform the analysis for the partition function Z ( N )  as in the 
two-dimensional case. However the very slow decrease of Z ( N )  is consistent with a 
value of one and an upper critical dimension d, = 3 (see equation (6)). 

To understand this asymptotic behaviour let us first consider the two-dimensional 
walk. Here one expects that the walker will return to the origin with probability one 
as in the usual random walk. Because the acceptance rate at N = 2000 is still -go%, 
one can argue that we have not seen the asymptotic behaviour yet, and that the 'true' 
asymptotic behaviour is governed by the random walk value v =; or the SAW value 
v = i. Because of the already discussed excluded volume property of this walk on does 
not expect to find the random walk value v = ;. Also the SAW value v = a  can be 
excluded, because the GSAT is much denser packed at every length scale. The possibility 
that the GSAT is in the IGSAW universality class U = 0.567 (Kremer and Lyklema 1985) 
can be dismissed because the IGSAW is constructed using a non-trivial long range 
interaction, whereas the GSAT is not. Also the value of y = 1.025 against y (IGSAW) = 1 
by construction, excludes this possibility. In three dimensions, similar to the random 
walk, one does not expect that the walker always returns to the origin. Instead one 
expects that a large fraction of all the walkers starting at the origin will never return, 
and it will be this fraction which governs the asymptotic behaviour of the model. It 
is then reasonable to expect a value of v = {, because asymptotically fluctuations will 
be negligible. 

From our numerical results we conclude that this new walk has an upper critical 
dimension of three. In three dimensions we can describe the logarithmic corrections 
of both the mean square end-to-end distance and the fourth moment with the same 
exponent. Also the ratio (R4( N ) ) / ( R 2 (  N ) ) 2  approaches the Gaussian result 3. Thus 
we have introduced a model with d, = 3, which is self-avoiding, shows an excluded 
volume effect and has a decreasing survival probability with increasing N. As mentioned 
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above this model mimics the cancellation of attractive and repulsive interactions of a 
polymer chain because the walker can visit a site more than once. This cancellation 
is responsible for the 6 point behaviour ( d ,  = 3) of a polymer solution. For d = 2 the 
theoretical and experimental values for v range from 0.505 to 0.56 (Vilanove and 
Rodelez 1980, Takahashi er a1 1982, Baumgartner 1982, Kholodenko and Freed 1984, 
Stephen 1975), consistent with the present result (0.535). I therefore suggest that this 
walk can be used as a model for the 6 polymer, although a rigorous justification 
requires an analytical theory. 

An interesting physical phenomenon which can be studied using this model is 
kinetic gelation (Herrmann er a1 1982). Here one models the sol-gel transition by 
performing a number of random walks of the self-avoiding type simultaneously. The 
first occurence of an infinite cluster marks the sol-gel transition. To study the scaling 
behaviour of the process in terms of the scaling properties of the underlying walks it 
is clearly desirable that the individual walks are long enough to show their asymptotic 
scaling behaviour. The GSAT has this property. Both in two and three dimensions one 
can describe the mean square end-to-end distance for N >  50 with a power law 
( v (d = 2) = 0.54, Y ( d  = 3) = OS), contrary to the GSAW ( KGW) which has been proposed 
by Majid el a1 (1984) to describe the zero-concentration limit of kinetic gelation. 
Computer simulations which use the GSAT as building block are currently in progress. 

The author wants to thank L Pietronero, K Kremer and A Weinrib for useful discussions. 
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